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Selection of Concept Detectors for Video Search by
Ontology-Enriched Semantic Spaces

Xiao-Yong Wei, Chong-Wah Ngo and Yu-Gang Jiang

Abstract—This paper describes the construction and utilization
of two novel semantic spaces, namely Ontology-enriched Seman-
tic Space( OSS) and Ontology-enriched Orthogonal Semantic
Space (OS2), to facilitate the selection of concept detectors
for video search. These two semantic spaces are enriched with
ontology knowledge, while emphasizing consistent and uniform
comparison of ontological relatedness among concepts for query-
to-concept mapping. OS2, in addition to being a linear space
like OSS, also guarantees orthogonality of the semantic space.
Compared with other ontology reasoning measures, both spaces
are capable of providing platforms that offer a global view
of concept inter-relatedness, by allowing evaluation of concept
similarity in metric spaces. We simulate OSS and OS2 by
using LSCOM concepts and experiment search effectiveness with
VIREO-374 concept detectors. Empirical observations indicate
that the proposed semantic spaces enable more effective selection
of concept detectors than eight other existing ontology measures.
OS2, in particular, is better in providing a viable and reasonable
solution for fusion of multiple concept detectors.

Index Terms— Semantic space, ontology, concept-based video
search, semantic detectors.

I. I NTRODUCTION

Semantic-based retrieval has been one of the long-term
goals of multimedia computing. Traditional content-based ap-
proaches for deriving semantics, purely based on low-level fea-
tures, such as color and texture, have shown their limitations in
conquering the so-called “semantic gap”. Modern approaches
enable a semantic search by pooling a set of concept detectors
(e.g., car and building) to extract semantics from low-level
features, and thus forming a semantic space to facilitate
high-level understanding of user queries [1]–[5]. Such search
methodology is usually referred to as concept-based video
search, as illustrated in Figure 1. The semantic gap from user
queries to raw data is bridged with a pool of concepts enriched
with general-purpose vocabularies, for instance, from ontology
(e.g., WordNet) and external information (e.g., Internet). The
ontology specifies the relationship among concept entities.
Basically, a set of concept detectors is developed to represent
high-level semantics. The detectors are classifiers learnt with
training examples described by multi-modal features. Given a
user query, the best set of concepts to describe the semantics
of the query is reasoned through the vocabularies. A search
list is then produced by ranking items (e.g., shots) according
to their signal responses to the selected concept detectors.

Under the concept-based retrieval framework as depicted in
Figure 1, an apparent issue is that, given a concept detector
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Fig. 1. General framework of concept-based video search. The semantic gap
between low-level features and user queries is bridged by a set of concept
detectors enriched by general knowledge such as ontology.

set, mapping ambiguity between queries and concepts needs
to be carefully resolved. Consider, for instance, a query of
“Find shots with snow”, and a concept set with three detec-
tors: landscape, soccer, fire. The concept similarities between
{snow,landscape}, {snow,soccer} and{snow,fire} need to be
properly reasoned in order to assign the best possible detectors
with appropriate weights to answer the query. A common
solution is to consider mapping through ontology reasoning
[1], [3], [4], [6], [7], or more precisely selecting concepts,
which minimize linguistic distance between the concepts and
query terms. The mapping is normally done with a shared
knowledge ontology such as WordNet [8], which is organized
as a graph with nodes that represent concepts and edges
that specify the relationships. Ontology reasoning normally
involves only a local view of a subgraph structure where
the two concepts under investigation reside. A fundamental
question is: can the pairwise concept similarities measured
based on the local view be effectively compared for selecting
detectors? Such a reasoning technique does not allow uniform
comparison of concept pairs, since the locally determined
similarities, in principle, are not comparable from one concept
pair to another.

In this paper, we propose a novel construction of semantic
space to measure concept similarity globally. In contrast to
the conventional ontology reasoning, this space enables an
uniform and global similarity measure of concepts. In this
space, basis vectors are formed by modeling ontological
relationship among concepts. Each concept is represented as a
vector for similarity measurement purposes. Because ontology
knowledge is taken into account when building the semantic
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space, we call the space “ontology enriched”. We propose two
variants of the semantic space by considering orthogonality
property of the space. The first space is named Ontology-
enriched Semantic Space (OSS), originally presented in our
recent work [9]. The second space is called Ontology-enriched
Orthogonal Semantic Space (OS2). With reference to figures
2(b) and 2(c),OSS is a linear space spanned with bases
formed by a set of selected concept vectors.OS2 is similar
to OSS, but the bases are not formed by the concepts
themselves. Instead, the basis vectors are computed by spectral
decomposition in order to guarantee the orthogonality of the
semantic space.

Figure 2 illustrates the major ideas of reasoning concept
similarity in WordNet ontology,OSS andOS2. Let concepts
a to e as children andv1 to v3 as ancestors. In Figure 2(a),
using the conventional ontology measures such as Resnik [10],
the concept pairs(a, b) and(a, c) could be the same, although
(a, c) shares another ancestorv2 and intuitively should be
more alike. On the other hand, the similarity scores of(d, e)
and (a, b) cannot be reasonably compared as they reside in
different parts of the ontology which carry different statistic
and structural information. In brief, the reasoning is deter-
mined locally without a global ontological view. The uniform
comparison of concept similarity scores cannot be conducted.
OSS andOS2, in contrast, project each concept as a vector in
their semantic spaces forglobalanduniformconcept similarity
measures. In Figure 2(b), for instance,OSS is formed by
selecting the ancestorsv1 to v3 as the basis vectors. The
conceptsa-e are then linearly projected toOSS as vectors
for concept similarity measure.OS2, as shown in Figure 2(c),
emphasizes space orthogonality and computes basis vectors
(B1, B2, B3) by spectral decomposition. With the bases, the
semantic spaces in figures 2(b) and 2(c) guarantee consistency
in comparing the concept pairs(a, b), (a, c) and (d, e), by
keeping a global view of the concept relatedness to the
basis vectors. Comparing both semantic spaces,OS2, being
an orthogonal space, has higher expressive ability because
redundancy among the basis vectors is kept at a minimum. The
orthogonality property could effectively prevent employment
of basis vectors which might be correlated and ultimately
results in certain subspaces dominating the whole semantic
space. This property is important such that each basis has an
equal contribution to the measurement of concept similarity.

The remaining sections are organized as follows. Section II
briefly describes the works in current literature, in particular
the ontology-based video search, related to our proposed
works. Section III presents the construction ofOSS andOS2,
and their properties. Section IV exploits the proposed semantic
spaces for concept selection and fusion. Finally, sections V and
VI present experiments on the construction of semantic spaces
and the utilization of spaces for video retrieval respectively.
Finally Section VII concludes this paper.

II. RELATED WORK

In the past few years, concept-based video retrieval has
attracted numerous research attention. Two critical efforts
are detection of semantic concepts and utilization of con-
cepts as “semantic filters” for query answering. Since 2001,
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Fig. 2. Reasoning concept similarity in (a) WordNet ontology: reasoning
is conducted in a subgraph without a global view of the graph structure, (b)
OSS: selected concepts (v1, v2, v3) are represented as bases for vector-
based concept similarity measure, and (c)OS2: the bases (B1, B2, B3) are
computed by spectral decomposition to represent concept vectors.

TRECVID (TREC Video Retrieval Evaluation) [11] sponsored
by NIST has organized annual workshops to publicly release
benchmarks and evaluations to support these efforts. Two
tasks organized by TRECVID are high-level feature extrac-
tion (HLFE) and automatic video search. In HLFE, concept
detectors are developed for video semantic annotation. In order
to identify a right set of detectors to develop, collaborative
efforts from various research organizations have been pooled
in to assess the utility, observability and flexibility of the
concept detectors [12]. One typical example is the release
of LSCOM (Large-Scale Concept Ontology for Multimedia,
http://www.lscom.org/) [12] which includes 834 semantic con-
cepts and a collection of annotations (training examples) for
449 out of the 834 concepts. With LSCOM, two detector sets,
Columbia-374 [13] and VIREO-374 [14], are also publicly
released to share the sets of detectors developed based on the
concepts in LSCOM. Another detector set commonly used is
MediaMill-101 [15] which provides 101 concept detectors.

With the availability of various concept detector sets, the
automatic video search in TRECVID is often straightforward
to perform based on the concept-based retrieval framework
depicted in Figure 1. Various studies [2]–[4], [16] have been
reported regarding the usefulness of concepts for video search,
compared to search with low-level features and text keywords.
The completeness, accuracy and utility of LSCOM concepts
towards effective search performance is also investigated in
[17]. Recently, the fundamental question of how many detec-
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tors are enough for effective video search is studied in [18].
In this work, it is reported that fewer than5000 concepts,
detected with minimal accuracy of10%, is likely to provide
satisfactory retrieval performance.

In this section, we begin by briefly describing the existing
concept similarity measures for ontology reasoning in Sec-
tion II-A. The related works in ontology-based video search
will be further presented in Section II-B. A brief comparison
of anchor-based selection approaches to our proposed semantic
spaces will also be discussed in Section II-C.

A. Ontology Reasoning

Ontology reasoning is an ongoing research topic of linguis-
tic computing [19]. Different measures have been proposed to
evaluate relatedness of two concepts by querying ontologies
such as WordNet for relatedness reasoning. The relatedness
is normally based on ontology distance which utilizes the
hyponym (is-a relationship) of concepts. With WordNet as
an example, the is-a relationship can be viewed as a graph
with nodes representing concepts and edges representing the
concept relatedness. The distance between two concepts is
dependent on information content (IC) and specificity of
concepts, or path length from one concept to the other by
traversing the edges. The IC is inversely proportional to the
probability of a concept being observed. The specificity of
a concept is defined by the depth of the concept in the
graph, where depth is ordered according to the levels of is-a
relationship. For instance, the conceptcar is under its ancestor
vehicleand thus resides deeper thanvehicle in WordNet.

Popular measures for concept similarity includes Leacock
and Chodorow (LCH) [20], Wu and Palmer (WUP) [21],
Resnik (RES) [10], Lin (LIN) [22], Jiang and Conrath (JCN)
[23], Lesk [24], Gloss Vector (Vect) [25] and Pairwise Gloss
Vector (VP) [25]. LCH and WUP use path length information,
while the remaining measures utilize information content
(RES, LIN, JCN) and definition of word sense (Lesk, Vect,
VP). DenoteD as the depth andI as the IC of a concept,L as
the path length between two concepts, andpij as the common
ancestor of conceptsci and cj . Some of these measures are
defined as

LCH(ci, cj) = − log
L(ci, cj)

2δ
(1)

WUP (ci, cj) =
2D(pij)

L(ci, cj) + 2D(pij))
(2)

RES(ci, cj) = I(pij) (3)

LIN(ci, cj) =
2I(pij)

I(ci) + I(cj)
(4)

JCN(ci, cj) =
1

I(ci) + I(cj)− 2I(pij)
(5)

whereδ denotes the maximum depth of WordNet. The IC is
estimated based on the one-million-word Brown Corpus of
American English [26]. Lesk utilizes the number of shared
words (overlaps) in the definitions (glosses) of concepts. Vect
represents concepts as gloss vectors using the co-occurrence
information derived from glosses. The cosine similarity be-
tween gloss vectors is used to measure the concept relatedness.

VP is similar to Vect, but different in the way it augments the
glosses of concepts with adjacent glosses [25].

B. Ontology-based Video Search

Depending on the modalities of search queries (visual and/or
text), there exist various ways to perform mapping from
queries to concepts. For text queries, the approaches in [3],
[4], [16] conduct mapping by the concept similarity measures
as presented in Section II-A. In addition to ontology reasoning,
some approaches also explore the mapping by comparing
queries against the text descriptions associated with concepts
[4], or to expand queries with related terms [1], [3]. The
expanded terms as well as their weights are learnt from
training examples [1] or external information such as Internet
[3]. For queries with image or video examples, the mapping
is often done by selecting the concept detectors which output
high confidence to query examples, indicating the likelihood
of corresponding concepts presented in the queries. When
multiple detectors are selected, the weight of a detector is
normally assigned based on the detection score of the detector
to image/video examples [27], or the ontology similarity of the
concept to text query [3].

A different strategy of query-to-concept mapping is via
construction of semantic space or vector space for modeling
concepts. The pioneering work in [5], [28] constructs a se-
mantic space, or more precisely a vector space, formed by
a set of available concept detectors. In this space, a retrieval
item (e.g., shot) is represented as a vector of model scores.
The scores are computed based on the signal responses of the
detectors to the item. Contrasting to other approaches based on
ontology reasoning [4], [16], no specific detector is selected,
but rather all detectors are involved in the video search though
each detector carries different weights. In [27], the idea of tf-
idf originated from information retrieval, which weights the
importance of a detector according to its appearance frequency,
is adopted to further improve the search performance of vector
space representation.

Conducting search based on ontology construction has also
been previously studied in [4], [29]–[31]. The construction
mostly involves manual mapping of visual elements to textual
concept entities provided by shared vocabularies. In [29],
WordNet is extended with visual tags describing properties
such as visibility, motion and frequency of occurrence. In [31],
based on WordNet and MPEG-7, a visual ontology is created
by linking visual and general concepts. In view of the richness
of human vocabularies and the need for domain experts in
tagging or creating links, the scalability of these approaches
still remains unclear. A relatively straightforward approach is
recently proposed in [4] by directly attaching concept detectors
to WordNet synsets. The semantically enriched detectors can
thus utilize contextual information provided by WordNet.
In addition to the ontologies built on the basis of general-
purpose vocabularies, domain specific multimedia ontology is
also investigated. For instance, in [32], two animal domain
ontologies are constructed respectively for textual and visual
descriptions for semantic search.
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C. Anchor-based Selection

Considering the way that the proposed semantic spaces are
built by selecting and constructing the bases, our work is
also related to the anchor-based selection approaches [33]–
[36]. In these approaches, anchor space is built by selecting a
subset of objects from database as global reference axes. The
selected objects are named as foci [33], anchor [34] or vantage
points [35]. The main challenges of anchor-based selection are
which and how many objects should be selected as anchors.
The recent work in [33], for instance, proposes HF (Hull-of-
Foci) algorithm for the selection of anchor objects. The idea of
using anchors to build anchor-space has actually been used in
various applications including database indexing [33], music
classification [34], image retrieval [35], and animal sound
classification [36].

III. M ODELING SEMANTIC SPACE WITH ONTOLOGY

This section presents the construction of ontology-enriched
semantic space. Given a vocabulary setV = [c1, c2, . . . , cn] of
n concepts, we want to represent each conceptci in a vector
form in the semantic space. DenoteC as then-by-n concept
matrix which captures the vectors, defined as

C = [~c1,~c2, . . . ,~ci, . . . ,~cn] (6)

where~ci is a n-dimensional vector representing conceptci.
With C, the semantic space can be estimated as

~c1 × ~c2 × . . .× ~cn −→ R (7)

where ideally then concept vectors together form the bases
that approximate the real world spaceR. To estimate the
semantic space, there exist two major issues: the estimation of
the concept matrixC, and the orthogonality and compactness
of the semantic space.

A. ConstructingOSS

OSS, originally proposed in [9], aims to make the semantic
space in Eqn (7) as compact and complete as possible. Similar
to the anchor selection approaches,OSS achieves the aim by
identifying a subset of concepts inC appropriate to serve
as the basis vectors of the semantic space. To estimateC,
OSS computes the ontological relationships ofn concepts
by measuring their pairwise similarity. TheWUP measure
in Eqn (2) is employed to compute the similarity of each
concept pair. This forms the matrixR = [rij ]n×n where
each componentrij represents the similarity of a concept pair
(ci, cj). R basically approximatesC and encapsulates the all-
pair WUP similarities of n concepts. Each column vector
ri in R outlines the similarities of the conceptci to other
concepts.

To minimize the redundancy among concepts,OSS adopts
clustering approach which groups then concept vectors in
R into m < n clusters, and then selects one medoid from
each cluster to form the set of basis vectors. TheOSS is thus
spanned bym medoid concepts. Withm bases, the matrix
R is reduced toR̂ of m-by-m size. In OSS, each concept
can be easily represented as a vector inm dimensions, by

measuring theWUP similarity of the concept tom medoids.
An advantage ofOSS is that the bases are interpretable with
each basis represented by a semantic concept. Nevertheless,
the space is not strictly orthogonal, and the basis vectors are
thus somewhat correlated.

B. ConstructingOS2

OS2 aims to construct an orthogonal semantic space to
depict Eqn (7). Similar toOSS, OS2 first assumes the concept
matrixC can be modeled with matrixR computed withWUP
measure. Further assuming that each concept vectorri in R
is normalized, we can have

CT C = R (8)

To solveC, spectral decomposition [37] is applied toR:

R = V ΛV T

= (V Λ
1
2 V T )T (V Λ

1
2 V T ) (9)

where Λ is a matrix with all the eigenvalues ofR on its
diagonal, andV is the corresponding eigenvector matrix. As
a consequence, a particular solution that can describeC is

C = V Λ
1
2 V T (10)

With the spectral decomposition, the semantic space formed
by OS2 is orthogonal and spanned with the eigenvectors
which are computed by Schur decomposition [37] in our
approach. The concept vectors inC are obtained directly via
the transformation in Eqn (10). Comparing toOSS, the axes
of OS2 are not represented by the original concept vectors.
Instead, each basis vector is the linear combination of concept
vectors and orthogonal to each other.

1) Representing Unseen Concept:Because each basis vec-
tor is not directly interpretable, representing the unseen con-
cepts not found in the vocabulary setV is not as straight-
forward asOSS. Given a conceptu /∈ V, the corresponding
concept vector~u is predicted as

CT ~u = Ru

~u = (CT )−1Ru (11)

whereRu is a n-dimensional vector, representing the onto-
logical relatedness ofu to the n concepts inV with WUP
similarity. Note that the matrixCT might be singular as the
concepts inV are not completely independent (e.g., concept
car vs. vehicle), causing the~u not having a unique solution.
In our case, we solve the inversion ofCT with generalized
inverse [38]. The Moore-Penrose pseudoinverse is adopted
which can always make sure that Eqn (11) is solvable.

2) Minimizing Concept Redundancy and Re-estimateOS2:
While the solution ofOS2 with spectral decomposition and
generalized inverse sounds feasible, theoretically the solution
could be accurately estimated only when the initial given set
of vocabularyV contains no redundant concept. By checking
the concept sets such as the ones provided in LSCOM and
MediaMill-101, there always exist redundant concepts, which
make spectral decomposition unstable. Moreover, the approx-
imation error will be further amplified by Moore-Penrose
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Fig. 3. Partial view of LSCOM dendrograms created byOS2 with: (a) the
original vocabulary setV; (b) a compact vocabulary set̂V. When concept
redundancy is minimized in̂V, the general conceptboat resides at a higher
abstract level of the hierarchy in (b) than (a).

pseudoinverse, causing the prediction of unseen concepts
imprecise.

To tackle this problem,OS2 also adopts the clustering
approach, prior to spectral decomposition, to group concepts
while finding the optimal number of clusters inV. The aim is
to reduce concept redundancy and then use a more compact
concept set̂V to estimate the semantic space. This process is
similar toOSS where the medoid of each cluster is picked to
formed the new set̂V of m < n concepts. A reduced matrix
R̂ of m-by-m size is computed, and then decomposed via
Eqn (9). The coordinate system ofOS2 is then estimated and
represented with the eigenvectors of Eqn (9). The semantic
space is spanned bym < n basis concepts, and thus is
compact and relatively efficient when predicting the unseen
concepts using Eqn (11). Figure 3(b) illustrates the advantage
of estimation withV̂ by showing a partial view of the LSCOM
dendrogram created byOS2 with V̂. Compared to the original
dendrogram created withV in 3(a), the new dendrogram is
more intuitive. For instance, the conceptboat is correctly
merged at a higher abstract level of the dendrogram in 3(b)
than in 3(a).

C. Properties ofOSS and OS2

1) Metric Space:Since the spaces formed byOSS and
OS2 are linear, many known metrics can be employed to
characterize distance. In this paper, we use cosine similarity
for measuring the relatedness of concept vectors. Given two
conceptsu andv, the cosine similarity between them is

Sim(u, v) =
~u · ~v
|~u||~v| (12)

Note that the concept similarity is not only based on the
ontology relationship between conceptsu and v, but is also
with respect to their relatedness to the medoid concepts
obtained through clustering. Compared toOSS, OS2 has the
extra advantage that concept vectors are uniformly measured
in the orthogonal space.

Compared to other ontology measures such as Resnik [10]
and WUP [21], bothOSS and OS2 are metric spaces that
allow the consistent comparison of concept similarities. It is
not hard to show that other measures violate metric properties.
Take the graph structure in Figure 4 as an example, the path
length of (b, a) + (a, c) ≤ (b, c) violates triangle inequality.
Similarly, suppose each node is attached with information
content (IC), thenIC(e)+IC(d) ≥ IC(f). SinceIC is used

... ...

Fig. 4. Path length based ontology measures are not metric. For instance,
the distance from conceptb to c is equal to the length of pathb →e→ . . . →
f → . . . → d → c. Obviously(b, c) ≥ (b, a) + (a, c).

V1 V2

V1 V2

Family 1

Family 2

(a) (b)

Fig. 5. Measuring the concept similarity in WordNet withWUP . (a) The
similarity of (a, b) is the same as(a, c), althougha andb reside in a branch
(Family-1) different fromc (Family-2), and thus should have higher similarity.
(b) The concept pairs(a, b), (a, c), (c, b) have the sameWUP similarity,
althougha andb have another common ancestord in addition toe, and thus
should be more similar.

as a similarity measure and inversely proportional to distance,
IC based approach is also not a metric.

2) Comparison to WordNet:To fully reveal the benefit of
OSS andOS2, we contrast the major difference of measuring
concept similarity in these two spaces and in the original
ontology space (WordNet). Figure 5 illustrates two typical
cases where the linguistic-based similarity measures such as
WUP fail in distinguishing the relatedness between concepts.
For ease of elaboration, we assume conceptsa, b andc resides
at the same level of depth, and conceptse and d are the
ancestors. In Figure 5(a), the concepta shares the sameWUP
similarity with both b and c, althoughc resides in a family
different froma andb. With OS2 (or OSS), supposev1 and
v2 are the medoid concepts in the setV̂ (or basis vectors in
OSS), where~v1 is more related to Family-1 while~v2 is more
related to Family-2. By Eqn (12), we can easily show that
Sim(a, b) > Sim(a, c). This is simply because the concept
vectors~a, ~b and ~c are compared on a space that accounts
the inter-concept relatedness. Similarly in Figure 5(b), the
concepts pairs(a, b), (a, c) and(c, b) all have the sameWUP
similarity, althougha andb are more related because of sharing
another common ancestor. Assuming the conceptd is close to
~v2 while concepte is close to~v1, we can easily prove that
Sim(a, b) > Sim(a, c) in OSS andOS2.

In brief, the concept similarity in eitherOSS or OS2 is
globally measured with the constructed semantic axes. While
in WordNet, most linguistic reasoning methods utilize the
local structure (depth, path length, specificity) peculiar to a
sub-graph for measuring similarity. Consequently, an uniform
and objective comparison of similarity scores obtained from
different sub-graphs of WordNet becomes difficult.
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Fig. 6. Assigning weights to the top-3 similar detectors{di, dj , dk} of the
query termq. The weight of a detector is equal to the cosine similarity of the
detector to query term in the semantic space.

IV. CONCEPT-BASED V IDEO SEARCH BY OSS AND OS2

Given a text queryQ = {q1, . . . , qm} of m terms and the
detector setD = {d1, d2, . . . , dn} of n concepts, we measure
the pairwise term-to-concept similarity. The detectors are then
ranked according to their similarities to the query terms. The
top-k most related detectors to the query are subsequently
selected for concept-based video search. Because whether in
OSS or OS2 the detectors and query terms are represented
as vectors (see Figure 6), we can adopt the same strategies for
concept selection and fusion in both spaces.

A. Concept Selection and Fusion

The similarity between a query termq and a detectordj

is computed via the cosine similarity in Eqn (12). The top-1
detector is straightforwardly selected as

d̂ = argmax
dj∈D

Sim(q, dj) ∀q ∈ Q (13)

The selection of top-k detectors are conducted in a similar
way as Eqn (13), by picking up thekth most related detector
one at a time. By havingk detectors, a fundamental issue
is the fusion of detectors, specifically how to assign weights
to different detectors, for retrieval. BecauseOSS and OS2

are linear spaces, the weights can be determined by simply
equaling their values to the similarities of terms and concepts.
With Figure 6 as an example, supposing the top-3 selected
concept detectors are{di, dj , dk}, and the most similar query
term to these detectors isq. The weight assigned to a detector
is equal to its cosine similarity toq. In other words, the weight
is inversely proportional to the angle between query vector and
concept vector. The smaller the angle, the larger the weight.
In Figure 6, the detectordi is assigned the highest weight,
followed by dj anddk.

Let I be a retrieval item (e.g., shot) andT be the set of top-
k detectors. The similarity of a queryQ to I is determined by
the weighted linear fusion of detectors as follows

Sim(Q, I) =
∑

di∈T

Sim(qi, di)× Score(di, I) (14)

whereqi is the most similar query term todi, Sim(qi, di) is
the weight assigned to the detectordi, andScore(di, I) is the
output score ofdi when detecting the corresponding concept
on itemI.

B. Word Sense Disambiguation (WSD)

A query term is normally associated with multiple senses
or meanings. The exact sense of a term can be inferred by
knowing the contextual relationship of neighboring terms in a
query. For example,maphas two senses in WordNet:graphic
mapor mapping function. Given the query “map of Iraq”, map
is assigned to the former sense by knowingIraq is a country.
Word sense disambiguation (WSD) is a query preprocessing
technique commonly used for inferring the word sense and
predicting the search intention of queries which are short and
imprecise [24].

We formulate WSD as a greedy search approach which
can be implemented directly inOSS andOS2. The approach
estimates the actual sense of a termqi jointly with other senses
of terms in the queryQ. Suppose each term hasp senses,
there aremp ways of interpretingQ. Greedy search is adopted
to find a combination that maximizes the overlap of senses
for all terms in Q. With OS2 as example, the approach is
implemented by representing each sense with Eqn (11) and
then measuring the similarity of senses via Eqn (12). Denote
sk

i as the sense ofqi in kth combination, the actual query
senseQ̂ = {ŝ1, . . . , ŝm} is computed as

Q̂ = argmax
1≤k≤mp

φ(k) (15)

where

φ(k) =
m∑

i=1

m∑

j=i+1

Sim(sk
i , sk

j ) (16)

The queryQ̂, which associates the predicted sense of each
term, is then used for concept selection and fusion as presented
in Section IV-A.

V. EXPERIMENT-I: CONSTRUCTION OFSEMANTIC SPACE

The aim of this section is to experiment with the con-
struction of OSS and OS2 for effective video search. In
particular, the selection and computation of basis vectors are
evaluated. Comparison to the anchor-based selection approach
in [33] is also given to verify the effectiveness of the clustering
algorithm adopted inOSS andOS2.

In Section V-A, we use LSCOM concepts as the vocabulary
set for the construction of semantic space. The test set of
TRECVID 2006 video dataset [11] is further used to verify
the search effectiveness in sections V-B and V-C. The video
archive consists of about150 hours (79,484 reference shots)
of broadcast videos collecting from multi-lingual sources
including English, Chinese and Arabic languages. Twenty-
four search topics (see Table III), together with their ground-
truth provided by TRECVID 2006, are used as queries. We
only use the text queries of search topics for experiments,
imagining that most searchers use to perform search with a
short description of words.

For semantic concepts, we use VIREO-374 concept de-
tectors [14] trained using TRECVID 2005 development set.
Each detector is associated with three SVM classifiers trained
with local interest point features, grid-based color moment and
wavelet texture respectively. The outputs of three classifiers are



7

combined as the detection score with average fusion. We re-
move those detectors that have different description in LSCOM
and WordNet, resulting in a detector set of244 concepts. In
the experiments, we test the selection of single and multiple
concepts per search topic respectively. The retrieved items
(shots) are ranked according to their score to the selected
concept detector(s). The search performance is then evaluated
with mean average precision (MAP ), whereAP is defined as

AP =
1

min (R, k)

k∑

j=1

Rj

j
Ij (17)

whereR is the number of relevant shots to a search topic,Rj

is the number of relevant shots in the top-j retrieved shots,
and Ij = 1 if the shot ranked atjth position is relevant and
0 otherwise. We setk=1000, following the standard of search
task in TRECVID. MAP is the meanAP over all search
topics.

A. ConstructingOSS and OS2

We adopt agglomerative hierarchical clustering algorithm
[39] to find the best set of concepts to constructOSS and
OS2. The initial vocabulary setV is formed by the concepts
from LSCOM. We select572 concepts from LSCOM and
include them inV, by discarding those concepts not defined
in WordNet or being synonym of the existing concepts. The
actual senses of the selected concepts in WordNet are then
manually assigned based on visual impression. For ease of
evaluation, we only assign one sense to each concept, although
multiple sense assignment is possible.

By the agglomerative hierarchical clustering algorithm [39],
a dendrogram of 572 concepts is formed. We employ the
inconsistency coefficient [39] to find the best possible concept
clusters in the dendrogram. Denotel as a link connecting
two clusters, the inconsistency coefficientτ(l) of the link is
computed as

τ(l) =
len(l)− µ(l)

σ(l)
(18)

where len(l) is the length of linkl, defined as the centroid
distance between two clusters connected byl. The µ(l) and
σ(l) specify the average length and standard deviation of
all links under l respectively. The coefficientτ(l) basically
characterizes the tightness of a grouping under the linkl, by
comparing its length with all links under this grouping. The
lower the value ofτ , the more similar the concepts under the
link. At the lowest level of dendrogram,τ(l) = 0 since only
two concepts are underl.

Figure 7 shows the number of clusters (y-axis) whose
links are below a given coefficient value (x-axis). The result
indicates that the best possible case happens when there are
366 concept clusters, where theτ(l) increases slightly from0
but with a dramatic jump of572 to 366 concepts. Table I shows
few examples of the366 concept clusters and their medoids.
The medoid concepts are selected as the basis vectors ofOSS,
while for OS2 the medoids form the reduced vocabulary set
V̂ for spectral decomposition in Eqn (9). The next subsection
will further investigate the impact of concept clusters to the
search performance.
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Fig. 7. Obtaining different number of concept clusters by thresholding the
inconsistency coefficientτ(l) at different values. The best number of clusters
happens when the curve remains steady at point where there are366 clusters.

TABLE I
EXAMPLES OF THE SELECTED MEDOID CONCEPTS BY AGGLOMERATIVE

HIERARCHICAL CLUSTERING AND INCONSISTENCY COEFFICIENT.

Medoid Cluster Members
building greenhouse, office building, music hall, theater, bathhouse,

barn, boathouse, pumping station, farm building,
observatory, hotel, bridge, bridge, viaduct, overpass

vehicle tractor, armored vehicle, car, motorcycle, pickup truck,
limousine, truck

leader cheer leader, tribal chief
store supermarket, butcher shop, shopping mall, retail store
boat sailboat, rowboat, houseboat, tugboat, canoe, barge boat
room cabin, conference room, ballroom, room, classroom, art

gallery lobby, bar, dining room, kitchen, emergency room,
library, bathroom, living room

battleship frigate, aircraft carrier, submarine
sport tennis, basketball, ice skating, swimming, car racing,

skiing, gymnastics

B. Impact on Video Search Performance

To verify that the selection of366 concept clusters is the
best possible choice forOSS andOS2, we compare the search
performance in terms ofMAP by varying the number of
concept clusters. Figures 8(a) and 8(b) show theMAP of
24 TRECVID search topics against different choices from2
to 572 concept clusters1 for OSS and OS2 respectively. We
experiment both single and multiple concept selection. For
multiple concepts, the top-3 detectors are selected for query
answering. As indicated in the figures, the search performance
basically improves when more medoids are included to learn
the semantic space. TheMAP reaches the highest when the
number of axes is equal to370 and 361 for OSS and OS2

respectively. The performance starts to drop from this point
onwards when more medoids are considered. The results of
peak at 370 and 361 are slightly deviated from the ideal
theoretical peak of having366 medoid concepts. The results
are not surprised since the performance to certain extent is
also dependent on the reliability of detectors. The empirical
evidence, overall, shows that366 clusters, or slightly deviated
from this number, are enough to represent the572 concepts
in LSCOM.

1In Figure 8, the step size of the number of concept clusters is set to25.
The step size is further refined to1 in the range of300 and400 in order to
find the best search performance.
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Fig. 8. Experimenting search performance when different numbers of concept
clusters are used for constructing semantic space. The best performances of
OSS andOS2 are achieved when there are370 clusters.

The performance ofOSS could be explained by the space
completeness. Underestimating the number of axes results in
the lack of bases to span the semantic space. The incom-
pleteness causes the deficiency of vector representation in
the space. Overestimating the number of basis vectors, on
the other hand, could results in over emphasis of certain
concepts which are correlated. Similarly forOS2, the space
should be completed with abundant concepts. Furthermore,
concept redundancy ought to be minimized. Otherwise, the
concept vectors might not be properly predicted with Eqn (11).
From the results in Figure 8, the performances ofOSS and
OS2 are similar and attain the best, for single and multiple
concept selections, when there are abundant concepts with less
correlation selected to build the semantic space.

Considering when there is lack of concepts to span the
semantic space,OSS shows betterMAP for single concept
selection, as indicated in Figure 8 before reaching the peak per-
formance. This difference is mainly due to their fundamental
considerations:OSS is built purposely with the real concepts
as their bases, but this is not the case forOS2. Due to the
requirement of space transformation,OS2 could suffer from
computational instability if there are no abundant concepts
available in the vocabulary set̂V. On the other hand,OS2 has
higher ability in offering consistent query-concept similarity
for the fusion of multiple concept detectors. Particularly, if the
number of basis vectors is over-estimated,OS2 is able to show

TABLE II
COMPARING HIERARCHICAL CLUSTERING ANDHF ALGORITHM IN

CONSTRUCTING THE SEMANTIC SPACE FOR VIDEO SEARCH.

Basis Single concept Multiple concept
vectors OSS OS2 OSS OS2

Clustering 366 0.0384 0.0385 0.0410 0.0424
Hull of Foci (HF) 347 0.0316 0.0341 0.0351 0.0374

more stable and better performance thanOSS. This is mainly
due to the advantage of having orthogonal bases where the
redundancy is tackled during the stage of space transformation.
OSS, without taking into account the space orthogonality,
deteriorates considerably when redundant concept clusters are
included, as indicated in Figure 8(a).

C. Comparison to Anchor-based Selection Algorithm

In constructingOSS and OS2, there are various ways
of selecting concepts which ultimately form the semantic
spaces. In this subsection, we verify the choice of adopting
hierarchical clustering inOSS andOS2, in comparison with
the “Hull of Foci” (HF) algorithm recently proposed in [33].
HF is basically a greedy search algorithm to select a number
of anchors from a given dataset as global reference points. In
OSS, for instance, the anchors can be directly treated as the
basis vectors of the semantic space. In [33], the number of
anchors is estimated by approximating the intrinsic dimension
of a dataset. In our implementation, we employ the algorithm
in [40] to approximate the intrinsic dimension.

Table II lists the search performance of employing hier-
archical clustering and HF algorithm for constructingOSS
and OS2. For HF, there are 347 anchors being selected to
form the basis vectors. As shown in Table II, for both single
and multiple concept selections, the hierarchical clustering
outperforms HF algorithm. We investigate the results and find
that hierarchical clustering indeed has a better capability in
removing concept redundancy in our application. For instance,
the conceptsmilitary personnelandmilitary are both selected
as anchors by HF but not by hierarchical clustering.

VI. EXPERIMENT-II: CONCEPT-BASED V IDEO SEARCH

In this section, we study the search performance ofOSS
andOS2 from three different aspects: effectiveness of concept
fusion, influence of detector set, and comparison to eight
other ontology reasoning measures used in the literature.OSS
and OS2 are constructed based on the results presented in
Section V-A, where there are366 concept clusters being
selected to build the semantic spaces.

In order to have more sample queries for experiments, we
use the testing sets of TRECVID 2005 and 2006 in this section.
This results in a total of48 testing queries. The topics, ranging
from ID 149 to 196, are listed in Table III. The topic-ID is
named and assigned by TRECVID. Note that the topics 149-
172 are conducted on TRECVID 2005 dataset, while the topics
173-196 are conducted on TRECVID 2006 dataset. There are
85 (150) hours of videos and 45,765 (79,484) reference shots
in the testing set of TRECVID 2005 (2006) dataset.
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TABLE III
SEARCH TOPICS(TOPICS149 TO 172 ARE FROM TRECVID 2005;TOPICS

173-196ARE FROM TRECVID 2006).

ID Topic
149 Condoleeza Rice
150 Iyad Allawi, the former prime minister of Iraq
151 Omar Karami, the former prime minister of Lebannon
152 Hu Jintao, president of China
153 Tony Blair
154 Mahmoud Abbas, also known as Abu Mazen, prime

minister of the Palestinian Authority
155 A graphic map of Iraq, location of Bagdhad marked

- not a weather map
156 Tennis players on the court,

both players visible at the same time
157 People shaking hands
158 A helicopter in flight
159 George Bush entering or leaving a vehicle,

he and vehicle both visible at the same time
160 Something on fire with flames and smoke visible
161 People with banners or signs
162 One or more people entering or leaving a building
163 A meeting with a large table and more than two people
164 A ship or boat
165 Basketball players on the court
166 One or more palm trees
167 An airplane taking off
168 A road with one or more cars
169 One or more tanks or other military vehicles
170 Tall building
171 A goal being made in a soccer match
172 An office setting, i.e., one or more desks/tables

and one or more computers and one or more people
173 One or more emergency vehicles in motion
174 One or more tall buildings
175 People leaving or entering a vehicle
176 Soldiers, police, or guards escorting a prisoner
177 Daytime demonstration or protest with at least part of one

building visible
178 US Vice President Dick Cheney
179 Saddam Hussein with at least one other person’s face at least

partially visible
180 Multiple people in uniform and in formation
181 US President George W. Bush, Jr. walking
182 Soldiers or police with one or more weapons and military vehicles
183 One or more boats or ships
184 People seated at a computer with display visible
185 One or more people reading a newspaper
186 A natural scene
187 One or more helicopters in flight
188 Something burning with flames visible
189 A group including least four people dressed in suits,

seated, and with at least one flag
190 At least one person and at least 10 books
191 At least one adult person and at least one child
192 A greeting by at least one kiss on the cheek
193 One or more smokestacks, chimneys, or cooling towers with

smoke or vapor coming out
194 Condoleeza Rice
195 One or more soccer goalposts
196 Scenes with snow

TABLE IV
COMPARISON OF CONCEPT FUSION STRATEGIES FOR VIDEO SEARCH

USING VIREO-374DETECTOR SET.

Detection
OSS OS2 Borda voting reliability

TRECVID 2006 0.0410 0.0424 0.0266 0.0104
TRECVID 2005 0.1186 0.1235 0.0286 0.0205

TABLE V
SEARCH PERFORMANCE WITHCOLUMBIA -374 DETECTOR SET.

Concept TRECVID 2006 TRECVID 2005
selection Single Multiple Single Multiple
OSS 0.0211 0.0205 0.0554 0.0773
OS2 0.0248 0.0261 0.0563 0.0788

A. Comparison of Concept Fusion Strategies

To investigate the effectiveness of fusing multiple concepts
in OSS and OS2, two fusion strategies based on Borda
voting and detection reliability are used as the baselines for
performance comparison. In Borda voting, the rank positions
of a shot retrieved by different detectors are summed as the
score. In detection reliability, the reliability of a detector is
used as the weight for fusion. There are various ways to de-
termine the reliability of a detector. In our implementation, the
weights of detectors are set equal to theirAPs estimated based
on a subset of training data obtained from TRECVID 2005
development set. In the experiment, the top three detectors
of a search topic are first selected and then the rank lists
are produced respectively by four different fusion strategies.
Table IV shows the comparison of various fusion strategies.
OS2 shows the bestMAP for 48 search topics followed by
OSS. Both fusion strategies show significantly better search
performance than the baselines by Borda voting and detection
reliability.

B. Influence of Detector Set

To study the influence of detectors towards the search
performance, we conduct an experiment by using Columbia-
374 [13], instead of VIREO-374, as the set of detectors.
Columbia-374, trained using the same dataset as VIREO-374,
use grid-based color moment and Gabor texture as features.
Table V shows theMAP of using the Columbia-374 detector
set for single and multiple concept selections. Obviously,
the performance is significantly impacted by the choice of
detector set. Comparing to theMAP of 0.0424 (TRECVID
2006) by VIREO-374 and of 0.0261 by Columbia-374 in the
case of multiple concept selection withOS2, the performance
difference is indeed significant.

C. Comparison of Concept Similarity Measures

In this section, we compareOSS and OS2 to eight other
popular ontology measures: LCH [20], WUP [21], RES [10],
LIN [22], JCN [23], Lesk [24], Gloss Vector (Vect) [25] and
Pairwise Gloss Vector (VP) [25]. In the experiment, except
OSS andOS2, all measures employ Lesk algorithm [24] for
word sense disambiguation.OS2 estimates the actual senses
of query terms in its own semantic space as presented in
Section IV-B. For multiple concept selection, linear fusion as
presented in Eqn (14) is employed. Depending on the ontology
measure being used, the weight of a selected detector is set
equal to its similarity to query.

Table VI shows the performance comparison of ten different
measures. The search result indicates thatOS2 outperforms
other measures, particularly for the multiple concept selection.



10

TABLE VII
AVERAGE PRECISION OF VARIOUS ONTOLOGY MEASURES FOR MULTIPLE CONCEPT SELECTION ONTRECVID 2005AND 2006. THE BEST RESULTS ARE

BOLD.

ID OSS OS2 LCH WUP RES LIN JCN Lesk Vect VP
149 0.0002 0.0003 0.0002 0.0002 0.0003 0.0002 9E-050.0006 8E-05 3E-05
150 0.0001 0.0015 0.0001 9E-05 0.0015 0.0001 0.0000 0.0000 8E-05 0.0000
151 0.0007 0.0008 0.0012 0.0008 8E-05 0.0011 0.0002 0.0007 0.0006 0.0006
152 0.0239 0.028 0.0239 0.0095 0.0079 0.0236 0.0077 0.0021 0.016 0.002
153 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3E-050.0003
154 0.0000 1E-05 4E-05 1E-05 1E-05 4E-05 9E-05 4E-05 3E-050.0001
155 0.027 0.0289 0.0177 0.0135 0.0241 0.0261 0.0185 0.0203 0.0211 0.0166
156 0.5844 0.6245 0.2953 0.1907 0.1845 0.1763 0.5844 0.5844 0.1736 0.2404
157 0.0056 0.0054 0.0047 0.0053 0.0044 4E-06 7E-06 0.0003 2E-06 0.0009
158 0.1853 0.1912 0.1796 0.1664 0.0536 0.0000 0.0000 0.19 0.1868 0.1901
159 0.0016 0.0016 0.0008 0.0008 0.001 0.0016 0.0005 0.0016 0.0002 0.0007
160 0.0271 0.027 0.0224 0.0174 0.0197 0.0198 0.0226 0.0234 0.0262 0.0214
161 0.0942 0.0976 0.0155 0.0145 0.0115 0.0213 0.0216 0.0001 2E-05 0.0421
162 0.0014 0.0017 0.001 0.0017 0.0008 0.0005 0.0011 0.0011 0.0002 0.0009
163 0.0481 0.0481 0.0244 0.0247 0.0253 0.0322 0.0258 0.0464 0.0004 0.033
164 0.1549 0.1549 0.1518 0.1425 0.1368 0.1117 0.1528 0.127 0.058 0.1546
165 0.5221 0.5343 0.471 0.412 0.3944 0.4437 0.5343 0.5204 0.2675 0.4421
166 0.0064 0.0064 0.0046 0.0037 0.0057 0.0032 0.0059 0.0058 0.0053 0.0058
167 0.0393 0.0397 0.0368 0.0393 0.0304 0.0132 0.0178 0.0203 0.0214 0.0277
168 0.1979 0.1979 0.1479 0.1399 0.1263 0.1737 0.1438 0.1516 0.0703 0.1979
169 0.0761 0.0761 0.0761 0.0761 0.0747 0.0761 0.0761 0.0503 0.0761 0.0699
170 0.1122 0.1122 0.047 0.1127 0.0103 0.039 0.0493 0.0506 0.0303 0.0476
171 0.6086 0.6583 0.539 0.4954 0.0426 0.0000 0.0000 0.4701 0.3493 0.5309
172 0.1281 0.1281 0.1337 0.1204 0.0833 0.1121 0.0851 0.0407 0.0585 0.129
173 0.0066 0.0081 0.0081 0.0074 0.0097 0.0140 0.00740.0140 0.0140 0.0133
174 0.0656 0.0607 0.0649 0.0655 0.0656 0.0276 0.0282 0.0435 0.0289 0.0531
175 0.0042 0.0063 0.0051 0.0044 0.0042 0.00580.0072 0.0036 0.0000 0.0042
176 0.0009 0.0010 0.0010 0.0010 0.0010 0.0009 0.00100.0011 0.0011 0.0010
177 0.0011 0.0018 0.0021 0.0014 0.0011 0.0002 0.0003 0.0015 0.00040.0042
178 0.0081 0.0065 0.0076 0.008 0.0081 0.0066 0.0067 0.0003 0.00010.0088
179 0.0000 4E-07 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
180 0.0003 0.0003 0.0004 0.0000 0.0000 6E-06 2E-05 0.0000 0.0000 0.0000
181 0.0024 0.0013 0.0016 0.0024 0.0024 0.0017 0.0011 0.0006 0.0006 0.0007
182 0.0376 0.0376 0.0376 0.0376 0.0265 0.0271 0.0297 0.0297 0.0376 0.0258
183 0.0269 0.0285 0.0283 0.0256 0.0252 0.0152 0.0278 0.0299 0.0223 0.0287
184 0.0026 0.0042 0.0035 0.0028 0.0026 0.00400.0045 0.0029 0.002 0.0042
185 0.0713 0.0755 0.0572 0.0276 0.0906 0.07520.0986 0.0970 0.0033 0.0854
186 0.0266 0.0241 0.0241 0.0078 0.01070.0305 0.0117 0.0241 0.0246 0.0227
187 0.0210 0.0267 0.0095 0.0158 0.0011 0.0044 0.0240 0.0258 0.02570.0290
188 3E-06 7E-06 8E-06 1E-05 3E-06 0.0122 0.0012 1E-050.0114 6E-05
189 0.0201 0.0256 0.0224 0.0207 0.02010.0309 0.0306 0.0292 0.0062 0.0292
190 0.0001 0.0003 0.0005 6E-06 4E-06 3E-06 0.0000 0.0000 0.0001 6E-06
191 2E-05 2E-05 2E-05 0.0025 2E-05 2E-050.0025 2E-05 0.0025 2E-06
192 0.0090 0.0167 0.0139 0.0126 0.0137 0.0163 0.0164 0.0137 0.0000 0.0132
193 0.0384 0.0384 0.0384 0.0384 0.0384 0.0384 0.0384 0.0384 0.0384 0.0384
194 0.0000 0.0001 4E-05 0.0000 0.0000 3E-05 9E-05 3E-050.0001 3E-05
195 0.6085 0.6208 0.6181 0.6100 0.6035 0.5929 0.5929 0.5941 0.4291 0.5128
196 0.0332 0.0332 0.0306 0.0176 0.0122 0.0149 0.0244 0.0335 0.0210 0.0031

TABLE VI
SEARCH PERFORMANCE OF TEN ONTOLOGY MEASURES. THE BEST

RESULTS ARE BOLD.

Concept TRECVID 2006 TRECVID 2005
selection Single Multiple Single Multiple
OSS 0.0384 0.0410 0.1056 0.1186
OS2 0.0385 0.0424 0.1056 0.1235

LCH [20] 0.0363 0.0406 0.0963 0.0914
WUP [21] 0.0363 0.0379 0.0968 0.0828
RES [10] 0.0364 0.0390 0.0650 0.0516
LIN [22] 0.0363 0.0383 0.0650 0.0531
JCN [23] 0.0364 0.0398 0.0650 0.0728
Lesk [24] 0.0363 0.0410 0.0962 0.0962
Vect [25] 0.0384 0.0279 0.1040 0.0567
VP [25] 0.0359 0.0366 0.0755 0.0898

This again demonstrates the capability ofOS2 in offering
pairwise concept similarities appropriate for the fusion of

detector outputs. Comparing theMAP , multi-concept selec-
tion strategy basically improves the search performance of all
measures (except Vect) over single-concept. While Vect shows
very competitive performance in single concept selection,
the MAP degrades significantly when multiple concepts are
considered. The similarity value given by Vect appears to be
less reliable and can be easily distorted with noise in WordNet.

Table VII further details the search performance of each
measure in multiple concept selection. Among the 48 search
topics, OS2 obtains the best performance in23 topics, fol-
lowed by OSS which performs the best in12 topics. For
certain categories of search topics, such as topics involve name
entity (e.g., ID-149) and motion or event (e.g., ID-173), the
advantage of having semantic axes is not apparent. Among
all the search queries, topics ID-156 and ID-195 have the
most positive influence towards the overall performance. By
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removing these two queries from experiments,OS2 andOSS
still obtain the bestMAP performance.

Table VIII lists the top-3 selected VIREO-374 detectors by
OS2. By manually browsing the detectors selected by various
ontology measures,OS2 is always able to pick up the se-
mantically appropriate top-3 detectors. TheAP of few topics
(ID: 179, 180, 188, 190, 191, 194), nevertheless, is lower
than 0.001. There are several reasons. For topics including
name entities like topics178, 179 and 194, text search is
more appropriate than concept-based search in general. In
addition, as we do not consider detector reliability, fusing with
unreliable detectors will also degrade the performance. For
instance, consider the detectortie in topic-180 andfirefighter
in topic-188. While both detectors are correctly picked, the
detection performance is too low for expecting a reasonable
search result. On the other hand, the specificity and coverage
of concept detectors, which to certain extent can affect search
performance, is not considered in our work. For instance, in
topic-190, all the selected concepts are related topersonbut
not book. The search performance can be improved, if by
knowing thatbook is more specific thanperson, or by having
a mechanism to select the set of detectors which are more
diverse. These issues are outside the scope of this paper, but
will be included in our future studies.

1) Significance Test:To verify whether the performances
of OSS and OS2 are by chance, we further conduct signif-
icance test. The test is based on the randomization test [41]
suggested by TRECVID, where the target number of iterations
used in the randomization is100, 000. At the 0.05 level of
significance,OSS and OS2 are significantly better than all
the other measures in terms of single and multiple concept
selections. The only exception is Vect where the performance
is indistinguishable fromOSS and OS2 for single concept
selection. Comparing the two proposed semantic spaces,OS2

is considered better thanOSS for multiple concept selection at
the 0.15 level of significance. There is no significant difference
betweenOS2 andOSS for single concept selection.

VII. C ONCLUSION AND FUTURE WORK

We have presented our approaches in constructing two
variants of ontology-enriched semantic space:OSS andOS2

for concept-based video search. Both spaces can guarantee a
consistent way of comparing concept similarity scores when
performing query-to-concept mapping. Using VIREO-374 de-
tectors, experimental results over 235 hours videos on 48
search topics of TRECVID 2005 and TRECVID 2006 have
indicated and confirmed the feasibility ofOSS and OS2

for large-scale video search. Compared with the traditional
measures such as Resnik and WUP, both semantic spaces offer
better search performance. Compared withOSS, OS2 shows
better performance in the fusion of multiple concept detectors
due to the employment of orthogonal bases.

While encouraging, there are a couple of issues not be-
ing addressed in our current work and worth for future
consideration. For instance, the occurrence of concepts, in
addition to their ontological relatedness, can be explored
for modeling a semantic space more viable for multimedia

TABLE VIII
THE TOP THREE DETECTORS SELECTED BYOS2 ON SEARCH TOPICS OF

TRECVID 2006.

ID Top-1 Top-2 Top-3
173 car truck police
174 building house of worship office building
175 vehicle business people bicycle
176 police soldier prisoner
177 building protester office building
178 george bush face head of state
179 person face protester
180 group business people tie
181 walking face george bush
182 military vehicle soldier
183 boat ship rowboat
184 computer business people group
185 newspaper business people group
186 lake mountain field
187 helicopter airplane vehicle
188 fire explosion firefighter
189 flag group business people
190 person individual protester
191 adult child person
192 greeting face body part
193 smokestack tower smoke
194 face george bush head of state
195 soccer football baseball
196 snow landscape graveyard

search. The co-occurrence statistics ideally hint the observ-
ability and discriminativeness of multimedia-based concepts.
Incorporating this information could possibly enlighten the
construction of a space that provides hint to select the most
diverse and discriminant set of concepts for query answering.
In addition to the positively correlated concepts, the set of
negative concepts (e.g., indoor versus outdoor) is also a useful
piece of information for the fast pruning of search results as
presented in [42]. Whether and how the frequently, positively
and negatively correlated concepts can be embedded in a
semantic space for effective video search will be the topic
of our future studies.
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A. Hauptmann, and J. Curtis, “Large-scale concept ontology for multi-
media,” IEEE MultiMedia, vol. 13, no. 3, pp. 86–91, 2006.

[13] A. Yanagawa, S. F. Chang, L. Kennedy, and W. Hsu, “Columbia uni-
versity’s baseline detectors for 374 LSCOM semantic visual concepts,”
Columbia University, Tech. Rep., 2007.

[14] Y.-G. Jiang, C.-W. Ngo, and J. Yang, “Towards optimal bag-of-features
for object categorization and semantic video retrieval,” inIntl. Conf. on
Image and Video Retrieval (CIVR), 2007.

[15] C. G. M. Snoek, M. Worring, J. C. van Gemert, J.-M. Geusebroek, and
A. W. M. Smeulders, “The challenge problem for automated detection of
101 semantic concepts in multimedia,” inACM Intl. Conf. on Multimedia
(MM), 2006, pp. 421–430.

[16] C. G. M. Snoek, J. C. van Gemert, T. Gevers, B. Huurnink, D. C.
Koelma, M. van Liempt, O. de Rooij, K. E. A. van de Sande, F. J.
Seinstra, A. W. M. Smeulders, A. H. C. Thean, C. J. Veenman, and
M. Worring, “The MediaMill TRECVID 2006 semantic video search
engine,” inTRECVID, 2006, pp. 277–290.

[17] J. R. Kender, “A large scale concept ontology for news stories: Em-
pirical methods, analysis, and improvements,” inIEEE Intl. Conf. on
Multimedia and Expo (ICME), 2007.

[18] A. Hauptmann, R. Yan, W.-H. Lin, M. Christel, and H. Wactlar, “Can
high-level concepts fill the semantic gap in video retrieval? a case study
with broadcast news,”IEEE Transaction on Multimedia, vol. 9, no. 5,
pp. 958–966, 2007.

[19] A. Budanitsky and G. Hirst, “Evaluating WordNet-based measures of
lexical semantic relatedness,”Computational Linguistics, pp. 13–47,
2006.

[20] C. Leacock and M. Chodorow, “Combining local context and wordnet
similarity for word sense identification,” pp. 265–283, 1998.

[21] W. Zhibiao and M. Palmer, “Verb semantic and lexical selection,” in
Annual Meeting of the Association for Computational Linguistics (ACL),
1994, pp. 133–138.

[22] D. Lin, “Using syntactic dependency as local context to resolve word
sense ambiguity,” inAnnual Meeting of the Association for Computa-
tional Linguistics (ACL), 1997, pp. 64–71.

[23] J. J. Jiang and D.W. Conrath, “Semantic similarity based on corpus
statistics and lexical taxonomy,” inIntl. Conf. Research on Computa-
tional Linguistics, 1997.

[24] M. Lesk, “Automatic sense disambiguation using machine readable
dictionaries: how to tell a pine code from an ice cream cone,” inthe 5th
Annual Intl. Conf. on Systems Documentation, 1986, pp. 24–26.

[25] S. Patwardhan and T. Pedersen, “Using WordNet-based context vectors
to estimate the semantic relatedness of concepts,” inConf. of the
European Chapter of the Association for Computational Linguistics
(EACL), 2006.

[26] N. Francis and H. Kucera,Frequency analysis of English usage: Lexicon
and grammar, 1982.

[27] X. Li, D. Wang, J. Li, and B. Zhang, “Video search in concept subspace:
A text-like paradigm,” in Intl. Conf. on Image and Video Retrieval
(CIVR), 2007.

[28] J. R. Smith, M. Naphade, and A. P. Natsev, “Multimedia semantic
indexing using model vectors,” inIEEE Intl. Conf. on Multimedia and
Expo (ICME), 2003.

[29] A. Hoogs, J. Rittscher, G. Stein, and J. Schmiederer, “Video content
annotation using visual analysis and a large semantic knowledgebase,”
in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 2, 2003, pp. 327–334.

[30] H. Luo and J. Fan, “Building concept ontology for medical video
annotation,” inACM Intl. Conf. on Multimedia (MM), 2006, pp. 57–
60.

[31] L. Hollink, M. Worring, and A. T. Schreiber, “Building a visual ontology
for video retrieval,” inACM Intl. Conf. on Multimedia (MM), 2005.

[32] H. Wang, S. Liu, and L.-T. Chia, “Does ontology help in image
retrieval? A comparison between keyword, text ontology and multi-
modality ontology approaches,” inACM Intl. Conf. on Multimedia (MM),
2006, pp. 109–112.

[33] C. T. Jr., R. F. S. Filho, A. J. M. Traina, M. R. Vieira, and C. Faloutsos,
“The OMNI-family of all-purpose access methods: a simple and effec-

tive way to make similarity search more efficient,”The Intl. Journal on
Very Large Data Bases (VLDB), vol. 16, no. 4, pp. 483–503, 2007.

[34] A. Berenzweig, D. P. W. Ellis, and S. Lawrence, “Anchor space for
classification and similarity measurement of music,” inIEEE Intl. Conf.
on Multimedia and Expo (ICME), 2003.

[35] J. Vleugels and R. C. Veltkamp, “Efficient image retrieval through
vantage objects,”Pattern Recognition, vol. 35, no. 1, pp. 69–80, 2002.

[36] M. Slaney, “Mixtures of probability experts for audio retrieval and
indexing,” in IEEE Intl. Conf. on Multimedia and Expo (ICME), 2002.

[37] R. A. Horn and C. R. Johnson,Matrix Analysis, 1985.
[38] R. Penrose, “A generalized inverse for matrices,”Proceedings of the

Cambridge Philosophical Society, vol. 51, pp. 406–413, 1955.
[39] A. K. Jain and R. C. Dube,Algorithms for Clustering Data, 1988.
[40] S. D. Bhavani, T. S. Rani, and R. S. Bapi, “Feature selection using corre-

lation fractal dimension: Issues and applications in binary classification
problems,”Applied Soft Computing, vol. 8, no. 1, pp. 555–563, 2008.

[41] J. P. Romano, “On the behavior of randomization tests without a group
invariance assumption,”Journal of the American Statistical Association,
vol. 85, no. 411, pp. 686–692, 1990.

[42] W. H. Lin and A. Hauptmann, “Which thousand words are worth a
picture? Experiments on video retrieval using a thousand concepts,” in
IEEE Intl. Conf. on Multimedia and Expo (ICME), 2006, pp. 41–44.


