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Abstract 
This paper studies the role and performance of local 
invariant features arisen from interest points in describing 
and sketching semantic concepts. Both the local 
description and spatial location of interest points are 
exploited, separately and jointly, for concept-based 
retrieval. In concept description, a visual dictionary is 
generated with each keyframe being depicted as a vector of 
keywords. Semantic concepts are learnt and then spotted in 
this vector space model. In concept sketching, the location 
distribution of interest points, which outlines the basic 
shape of concepts, is novelly modelled with embedded 
Earth Mover's Distance. Experimental results with 
TRECVID-2005 corpus show that by incorporating both 
properties of interest points with baseline features, an 
improvement of 70% (over color) and 26% (over color and 
texture) in concept retrieval is reported.. 

Keywords:  Semantic Concept Retrieval, Local Interest 
Point (LIP), Visual Keyword, LIP Distribution. 

1 Introduction 
Shot (or keyframe) retrieval through the filtering of 
semantic concepts has recently attracted numerous 
research attentions. Generally speaking, the concept 
filtering serves as a pioneering step in bridging the 
semantic gap of low-level features and high-level concepts. 
Previous evaluation in TRECVID (TREC video retrieval 
evaluation website n.d.) indicates that the state-of-the-art 
performance in concept-based retrieval is jointly or partly 
attributed to the advanced models in feature description, 
machine learning and multi-modality fusion (Amir et al 
2005, Chang et al 2005). In this paper, we investigate the 
role of local invariant features, specifically the local 
interest point (LIP) and the related descriptors, in boosting 
the performance of concept retrieval from the view of 
feature-level analysis. Figure 1 illustrates the idea of our 
work. The middle column shows a group of LIPs overlaid 
on two keyframes with a concept mountain, and the right 
column sketches the basic outline of mountain in the 
keyframes with LIPs. Intuitively, both examples indicate 
the expressive and delineative power of LIPs respectively 
in locating key parts and describing the shape of a concept. 
This paper explores the potential of LIPs in these two 
aspects: 1) generate LIPs as visual keywords to describe 
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concepts, 2) model the location distribution of LIPs to 
sketch concepts.  

 

Figure 1: Keyframes with detected LIPs. Both the 
description and spatial location of the LIPs are utilized 
for semantic concept retrieval in our approach. 

LIP-based representation has been studied for concept 
retrieval (Chang et al 2005), near-duplicate keyframe 
retrieval (Ke, Sukthankar, and Huston 2004, Zhang and 
Chang 2004) and image matching (Grauman and Darrell 
2005). In (Chang et al 2005, Zhang and Chang 2004), a 
part-based random attributed relational graph model 
(RARG) is proposed to capture the statistical attributes and 
topological relationship of interest points. As reported in 
(Chang et al 2005), when incorporating this model with 
other global features such as color and texture, the 
performance of retrieval is increased by about 10%. 
Similar in spirit, we study the performance of LIPs, but we 
do not specifically cast LIPs to a learning model to infer 
the matching and topology of interest points as in (Chang 
et al 2005, Zhang and Chang 2004). The model could be 
expensive to learn and involves a couple of empirical 
parameters that are not easy to be optimized. Instead, we 
use a relatively simple learning platform to investigate 
how LIPs describe and sketch concepts purely by their 
features. 

In (Ke, Sukthankar, and Huston 2004), LIP is also 
explored for keyframe and image matching. Due to the 
large amount of LIPs in a keyframe, locality sensitive 
hashing (LSH) is proposed for fast search of nearest 
neighbors. However, a recent study by Zhao, Jiang, and 
Ngo (2006) shows that the empirical performance of LSH 
for LIPs is indeed unsatisfactory. This is mainly due to the 
fact that LSH simulates approximate search and the chance 
of returning nearest neighbors in general is not high. As a 
consequence, the outcome of LIP matching often shows 
faulty and ambiguous matches. In (Grauman and Darrell 
2005), the embedded Earth Mover's Distance (e-EMD) is 
employed to model the distribution of LIPs in feature 
space. They study the performance of image matching in 
three datasets with scenes (from the sitcom Friends), 
objects (from ETH-80) and textures (from VisTex), and 
yield encouraging result. Our work is different from (Ke, 



Sukthankar, and Huston 2004) where we do not perform 
LIP matching and employ LSH respectively for speed and 
effectiveness reasons. In addition, our approach learns the 
location distribution of LIPs for concept sketching, rather 
than the distribution in feature space for matching which 
results in high dimensional feature representation as 
presented in (Grauman and Darrell 2005). 

2 Approach Overview 
This paper investigates the role of visual keywords and 
their location distribution in high-level concept retrieval. 
Figure 2 depicts the flow of our framework which is 
composed of a group of classifiers based on various 
descriptors including the proposed local invariant features. 
The color moment and wavelet texture serve as the 
baseline to judge the improvement of local features formed 
by LIPs. 

 

Figure 2: Framework. 

In our approach, LIPs are located by the Difference- 
of-Gaussian (DoG) detector (Lowe 2004) over different 
scales. The detector is scale invariant and can tolerate 
certain amount of affine transformation. Each LIP is 
characterized by a 36-dimensional PCA-SIFT feature 
descriptor. The descriptor has been demonstrated to be 
distinctive and robust to color, geometric and photometric 
changes (Ke and Sukthankar 2004). Generally the number 
of LIPs in a keyframe can range from several hundreds to 
few thousands and thus prohibit the efficient matching of 
LIPs with PCA-SIFT across large amount of keyframes. 
We generate a visual dictionary as in (Sivic and Zisserman 
2003) by offline quantization of LIPs. Subsequently each 
keyframe is described as a vector of visual keywords that 
facilitate direct keyframe comparison without point-to- 
point LIP matching. The local distribution of LIPs, on the 
other hand, is represented as shape-like features in the 
multi-resolution grids. The features are then embedded in 
a space where distance is evaluated with the e-EMD 
measure.  

For each concept, an ensemble of classifiers as in Figure 2 
is learnt. The extracted unimodal features are attached 
respectively to support vector machines (SVM) for 
discriminative classification in their own feature space. 
The results of various SVM learners are then re-ranked 
with average fusion. Since our aim is to investigate the role 
of LIPs from the feature-level point of view, we do not pay 
particular attention to the aspects of machine learning and 
multi-modality fusion. The framework we adopt is one of 
the commonly used platform for learning and fusion. 

3 Local Feature Representation 

3.1 Generating Visual Keywords 
We generate a visual dictionary of LIPs based on (Sivic 
and Zisserman 2003). We select 1500 keyframes from 
TRECVID-2005 development set, with about 80% of them 
containing the 39 high-level concepts specified in 
TRECVID. In total, there are about 850,000 LIPs 
extracted. Empirically we quantize these local points into 
5,000 clusters, and each cluster represents a visual 
keyword. With this visual dictionary, the classical tf-idf is 
used to weight the importance of keywords. A keyframe is 
then represented as a vector of keywords, analogous to the 
traditional text-based vector space model. 

3.2 Modeling Location Distribution 
We describe the distribution of LIPs with multi-resolution 
grid representation as illustrated in Figure 3. The size of 
grids varies at different resolutions and thus the granularity 
of shape information formed by LIP distribution changes 
according to the scale being considered. We compute the 
first three moments of grids to describe the shape-like 
information of LIPs across resolutions. Each grid is 
physically viewed as a point characterized by moments 
and weighted according to its level of resolution. With this 
representation, basically a keyframe is treated as a bag of 
grid points. The similarity between keyframes is based 
upon the matching of grid points within and across 
resolutions depending to their feature distance and 
transmitted weights that can be evaluated with Earth 
Mover's Distance (EMD). The complexity of EMD, 
nevertheless, is expensive and has an exponential worst 
case with the number of points. 

 

Figure 3: Modeling the distribution of local features. 
Grids with different resolution are imposed on the 
LIPs and a descriptor Dgij composed of three moments 
(d1, d2, d3) are computed for each grid gij. 

For speed reason, we adopt embedded EMD which 
provides a way to map the weighted point sets from the 
metric space into the normed space (Indyk and Thaper 
2003) with low distortion. The basic idea of the EMD 
embedding is as follows: Let two point sets P and Q with 
equal cardinality s, each in  and V=P∪Q. Imposing 
grids on the space 

kℜ
kℜ  of side length 2i, -1<i<log(△), 

where △ is the diameter of V. Let Gi be grid of side 2i, in 
order to embed a point set P, a vector vi is constructed with 
one coordinate per cell, where each coordinate counts the 
number of points in the corresponding cell. Ultimately, by 
concatenating all vi scaled by the side lengths, we can 
obtain the embedding of P: 



Concepts VK LIP-D VK+LIP-D WT CM 
People Walking/ running 0.150 0.069 0.143 0.076 0.079 
Explosion or fire 0.020 0.023 0.031 0.030 0.024 
Map 0.127 0.244 0.281 0.270 0.391 
US flag 0.154 0.020 0.082 0.045 0.072 
Building exterior 0.127 0.067 0.131 0.067 0.157 
Waterscape/waterfront 0.081 0.049 0.147 0.079 0.112 
Mountain 0.107 0.085 0.198 0.074 0.100 
Prisoner 0.001 0.000 0.001 0.002 0.001 
Sports 0.100 0.104 0.206 0.134 0.211 
Car 0.068 0.029 0.107 0.051 0.070 
Mean Average Precision 
(MAP) 0.094 0.069 0.133 0.083 0.122 

Table 1: Average precision of the 10 high-level concepts in TRECVID-2005 with different features. The best 
results are given in bold. 
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In the embedded space, the normed distance between f (P) 
and f (Q) is an estimation of the exact EMD distance. The 
EMD embedding has a provable upper bound of distortion 
of O(log△). Because the dimension of embedded vector is 
high, the locality sensitive hashing (LSH) technique is 
frequently used for nearest neighbor search (Grauman and 
Darrell 2005, Indyk and Thaper 2003). 

In our approach, each LIP is indexed with its spatial 
location location (x, y) in the keyframe. To keep the length 
of feature vector in an acceptable level, we only impose 
grids with four side lengths, i.e., 1/8△, 1/4△, 1/2△ and 
△ in this 2D space. Then, for each grid, the three moments 
of LIPs are computed to describe their distribution. The 
first moment counts the number of LIPs, while the second 
and third moments are the mean and variance of distances 
between all possible LIP pairs in the grid, as illustrated in 
Figure 3. Note that under the e-EMD setting, all grid 
points in the resolution i are grouped as a vector vi(P) 
weighted by 2i in the subspace. In our case for semantic 
concept retrieval, instead of using LSH for fast searching, 
we adopt machine learning approach which is proved to 
have better performance than direct searching in a metric 
space. The SVM is expected to learn the decision 
boundary that discriminates the embedded vectors of a 
semantic concept from others in the one-against-all 
strategy. 

4 Experiments 

4.1 Data Set and Evaluation Criteria 
We use TRECVID-2005 corpus to evaluate our proposed 
approach. The corpus contains more than 160 hours of 
broadcast videos, which were split in half chronologically. 
The first halves are used as test data while the second 
halves are used as development set for training. For the 
development set, TRECVID launched a collaborative 
annotation for several semantic concepts last year. In the 
experiment, we select a subset from the pool of manually 
annotated keyframes, together with some negative 
samples, for training of 10 concepts listed in Table 1. The 

10 concepts are selected in TRECVID-2005 for feature 
evaluation.  

We use the average precision over top-k retrieved shots for 
performance evaluation. Denote R as the number of true 
relevant shots in the corpus, and L as the ranked list of the 
retrieved shots. At any index j (1<j<k), let Rj be the 
number of relevant shots in the top j shots. Let Ij=1 if the jth 
shot is relevant and 0 otherwise, the average precision is 
defined as 
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We set k=2000, following the standard of high-level 
feature extraction in TRECVID evaluation. 

4.2 Results and Discussion 
We first evaluate the performance of visual keywords (VK) 
and LIP distribution (LIP-D) on 10 semantic concepts. 
Because VK and LIP-D are designed on two different 
attributes of LIPs, i.e., the description and spatial location 
respectively, we also use average fusion to combine both 
features. We compare the LIP-based features with grid 
based color moment (CM) and wavelet texture (WT). Both 
CM and WT have been shown as useful features in 
TRECVID-2005 corpus, which may partially because the 
time span of videos is about one month and there exist 
quite a lot of near-duplicate keyframes. In CM, three color 
moments (i.e., mean, standard deviation and skewness) are 
computed. Basically each keyframe is divided into 5 by 5 
grids, and the color moments are computed for each grid in 
Lab color space. For WT, we use 3 by 3 grids and each grid 
is represented by the variances in 9 DB-4 wavelet 
sub-bands. While VK and LIP-D describe the LIPs 
(around corners and edges) that are robust to various 
transformations over different scale spaces, WT accounts 
for the statistical distribution of edge points in multi- 
resolution space. 

Table 1 shows the performance comparison, where on 
average VK+LIP-D yields the best performance. VK is 
indeed useful for most of the concepts like people 
walking/running, US flag, Building exterior, Car and 
Mountain. This is due to the fact that these concepts are  



Concepts CM+WT CM+WT+VK CM+WT+LIP-D CM+VK+LIP-D+WT
People Walking/running 0.137 0.198 0.167 0.201 
Explosion or fire 0.035 0.040 0.041 0.042 
Map 0.398 0.381 0.389 0.383 
US flag 0.111 0.148 0.108 0.136 
Building exterior 0.181 0.224 0.205 0.225 
Waterscape/waterfront 0.172 0.215 0.210 0.230 
Mountain 0.182 0.241 0.238 0.288 
Prisoner 0.002 0.002 0.002 0.002 
Sports 0.284 0.339 0.342 0.367 
Car 0.140 0.181 0.153 0.191 
Mean Average Precision 0.164 0.197 0.186 0.207 

Table 2: Average precision of the 10 high-level concepts in TRECVID-2005 through average fusion of different 
features. The best results are given in bold. 

mainly belong to objects or scenes, which can appear 
anywhere in the keyframes with different scales and 
viewpoints. VK, without any spatial information, is better 
for capturing these concepts. LIP-D is useful for the 
concepts like map, sports, and mountain, because these 
concepts exist with somewhat uniform background or 
contour pattern (e.g., mountain in Figure 1 that can be 
delineated with the location distribution of LIPs). On the 
contrary, LIP-D performs poorly for the concepts like US 
flag, people walking/ running, and car, which can 
arbitrarily appear anywhere in the keyframes and LIP-D 
cannot effectively capture their LIP distribution under the 
presence of background clutter. Overall, we can conclude 
that the two LIP-based features, VK and LIP-D, indeed 
complement each other. By the average fusion of VK and 
LIP-D, great improvement is achieved for most concepts. 
Moreover, in term of mean average precision (MAP), the 
LIP-based feature has better performance than both CM 
and WT, which are indeed quite effective features in 
TRECVID-2005. WT and LIP-based features, although 
redundant in certain sense, indeed complement each other 
as we will demonstrate in Table 2. 

Our next experiment aims to evaluate the degree of 
improvement when fusing different features. Table 2 
shows the performance of various feature combination, 
with CM+WT as baselines. With different kinds of feature 
combination, the average improvement over baseline 
ranges from 13% to 26%. The result indicates that when 
incorporate VK or LIP-D upon the baseline, both of them 
could have better performance. In particular, obvious 
improvement is noticed for the concepts waterscape 
/waterfront, mountain and sports. Overall, the best MAP 
for almost all the semantic concepts is attained when 
fusing all the four features together, see Figure 5 for car 
results. The only two exceptions are map and US flag. For 
map, most keyframes are indeed from weather news, for 
which color alone is enough to achieve high precision. The 
US flag, as mentioned before, can appear anywhere in 
keyframes with different shapes and scales. So, global 
features can not capture useful information and are easily 
affect by background clutter. 

To have a better view of improvement when VK and 
LIP-D are incorporated upon the baseline, Figure 4 

compares the performance of all four features against the 
median and best results in the evaluation of 
TRECVID-2005. By only using four features, seven out of 
ten concepts are higher than median while the other three 
are around median. The results are still far from the best 
mainly due to the fact that we just focus on the feature 
level point of view, and did not pay particular attention on 
the aspects of machine learning and multi-modality fusion. 
Even so, the result indeed indicates the potential of 
delivering state-of-the-art performance, by focusing only 
on the expressive power of feature-level information with 
simple fusion strategy. 
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Figure 4: Comparison of our results with median and 
best of TRECVID-2005 

4.3 Run Time 
The generating process of our visual keywords takes 4 
hours. Then, based on the visual dictionary, we use 
KD-tree to speed up the vector quantization for all the 
keyframes. The entire vector quantization process, 
including all training and testing data sets, takes 30-40 
hours. For each concept, training a SVM model takes 
several seconds for CM, WT and LIP-D, and from several 
seconds to few minutes for VK, depends on the number of 
training keyframes. The predicting procedure of a 
semantic concept on the 80 hours testing data set takes 1-4 
minutes for CM, WT and LIP-D, and 5-20 minutes for VK. 



All of the computational costs are evaluated on a P4 3G 
machine with 512MB RAM. 

5 Conclusion 
We have presented two LIP-based features for semantic 
concept retrieval. One is visual keywords which are 
obtained by clustering of PCA-SIFT descriptors. The other 
feature is constructed based on the spatial distribution of 
the LIPs with EMD embedding. The experimental results 
on TRECVID-2005 data set show that local features are 
useful for most of the semantic concepts retrieval. In 
particular, the improvement of MAP is more significant 
for scenes (e.g., mountain and water) than that of objects 
(e.g., car). We conclude that the LIP-D is a good feature 
for most concepts except those object concepts with large 
variance in appearance and can appear anywhere in a 
keyframe. VK, on the other hand, is quite useful for those 
object concepts since it do not count in spatial information. 
Overall, by fusing the proposed feature descriptors with 
baseline features, the retrieval performance is boosted. We 
believe that the current result can be further improved if 
more advanced techniques in fusion and learning can be 
jointly considered. 
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Figure 5: Top 25 results for car. Ordered left to right 
and top to bottom. (a) Baseline (20 are correct); (b) 
Average fusion of four features (24 are correct).  
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