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In this supplementary material, we provide additional implementation details, anal-
ysis of the sensitivity of our results with the initial mesh, comparsions to other related
methods, additional metrics for the ablation study, different views of the reconstructed
mesh, and more qualitative results on ShapeNet images and real-world images.

1 Implementation Details

1.1 Camera projection

The perceptual feature pooling layer projects a 3D vertex onto the image plane and
pools features from the image feature pathway. For a 3D vertex with coordinate (X,Y, Z),
its 2D projection in image is:

x =
X

Z
∗ fx + cx,

y =
Y

Z
∗ fy + cy, (1)

where fx, fy are focal lengths along horizontal and vertical image axis, and (cx, cy)
is the center of projection of the camera. These parameters can be readily obtained by
intrinsic camera calibration once for a camera.

1.2 Bilinear feature pooling

Suppose the coordinate of the projection is (x, y). The feature is pooled using bilinear
interpolation [1]:

f =
(x2 − x)(y2 − y)

(x2 − x1)(y2 − y1)
f(x1, y1) +

(x− x1)(y2 − y)

(x2 − x1)(y2 − y1)
f(x2, y1)

+
(x2 − x)(y − y1)

(x2 − x1)(y2 − y1)
f(x1, y2) +

(x− x1)(y − y1)

(x2 − x1)(y2 − y1)
f(x2, y2), (2)

where (x1, y1), (x1, y2), (x2, y1) and (x2, y2) are the integral coordinates of the pixel
square where the projection reside in.

? indicates equal contributions.
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Fig. 1. Mesh visualization from a different view.

2 Comparison with Octree based Voxel Generation Method

This section provides a comparison with a Octree based voxel Reconstruction method
[8], which produces higher resolution voxels. Following Tartarchenko et al.[8], we train
on Shapenet-car and compare to it as shown in Tab. 1. Our model consistently outper-
form the octree based approach in all the evaluation metrics.

Method. F-score(� )↑ F-score(2� )↑ CD↓ EMD↓
Tartarchenko et al 65.335 79.733 0.361 1.273

Ours 72.128 87.247 0.236 1.220
Table 1. Comparsion to Tartarchenko et al.(1283) on ShapeNet-cars.

3 Hausdorff Distance for the Ablation Study

Hausdorff distance [2] between meshes measures how far two meshes are from each
other, we evaluate the ablation study with Hausdorff distance in Tab. 2. The full model
outperforms all except the one without Laplacian. Again, we think Laplacian term reg-
ulates deformation and thus benefits the surface smoothness and continuity, which is
hard to be reflected in Hausdorff distance.

-ResNet -Laplacian -Unpooling -Normal -Edge length Full model
HD↓ 0.644 0.600 0.616 0.623 0.643 0.603

Table 2. Results for the ablation study on hausdorff distence.

4 Other Views of the Generated Mesh

We provide mesh visualizations from other viewpoints, please see Fig. 1 for two exam-
ples. As can be seen, our model also recovers invisible parts of the 3D mesh.
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F-Score(� ) CD

Category Sphere EllipsoidN EllipsoidV EllipsoidH Sphere EllipsoidN EllipsoidV EllipsoidH

plane 69.11 70.52 68.68 71.12 0.482 0.463 0.491 0.477
bench 55.02 57.20 54.78 57.57 0.700 0.661 0.744 0.624
cabinet 57.35 60.26 56.77 60.39 0.425 0.393 0.463 0.381
car 64.18 67.50 62.16 67.86 0.313 0.282 0.367 0.268
chair 51.36 54.12 51.19 54.38 0.690 0.645 0.740 0.610
monitor 48.19 51.58 48.30 51.39 0.858 0.801 0.882 0.755
lamp 46.54 47.70 46.63 48.15 1.372 1.355 1.454 1.295
speaker 46.64 49.59 47.29 48.84 0.798 0.748 0.835 0.739
firearm 70.69 71.39 71.52 73.20 0.468 0.462 0.465 0.453
couch 48.87 52.26 48.62 51.90 0.587 0.527 0.605 0.490
table 63.34 65.37 63.21 66.30 0.547 0.505 0.590 0.498
cellphone 66.20 68.56 64.23 70.24 0.489 0.455 0.527 0.421
watercraft 52.53 54.21 52.07 55.12 0.737 0.707 0.758 0.670

mean 56.93 59.25 56.58 59.72 0.651 0.616 0.686 0.591

Table 3. F-Score (� ) and CD measurements with different initial shapes. ElliposidN, ElliposidV
and ElliposidH represent ellipsoid with noise, in vertical and in horizontal respectively. In the
main text, we adopt the ellipsoid in horizontal.

5 Sensitivity to the Initial Meshes

We test our approach with different initial meshes. Specifically, we have tried sphere,
noise ellipsoid (EllipsoidN) and ellipsoid in vertical (EllipsoidV) in addition to the orig-
inal ellipsoid in horizontal (EllipsoidH) as shown in Fig. 3. With each different shape,
we fine-tune the model with 30,000 iterations and report quantitative and qualitative
results in the Fig. 3 and Tab. 3. As can be seen, our method is not sensitive to the initial
shape.

6 More Qualitative Results

6.1 ShapeNet dataset

We show more qualitative results on rendered images from the ShapeNet dataset in Fig.
2. The first column shows the color images; the 2nd column shows the volume results
from Choy et al.[4] and the mesh converted using Marching Cube [7]; the 3rd column
shows the point cloud from Fan et al.[5] and the mesh converted using Ball Pivoting [3];
the 4th column shows the results of Neural 3D Mesh Renderer [6] and the last column
shows our results. Notice how our method produces both smooth surface and the sharp
details compared to other methods.
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Fig. 2. Qualitative Results on ShapeNet Dataset. We compare with 3DR2N2 [4], PSG [5], and
N3MR [6]. Our method produces results with smooth surface and sharp details.


